[Class] Micro - AI 특강 3,4일차
in Study on MachineLearning
Micro - AI 특강 Day 3
ESP32는 Bluetooth 기능을 갖고 있지만, wi-fi 기능은 갖고있지 않음 AI SW의 특징은 처리할 데이터가 많기 때문에 성능이 좋은 hardware를 사용해야 함 pc에 flash하는 sw를 설치해야 함
list는 다른 타입들이 들어와도 허용가능 또한 list내에 list를 추가하는 것도 가능
- method overadding
- 중복되는 메소드를 제거하는 것 function을 이용하여 내용을 바꾸는 것을 encapsulation이라고 함. -> 이게 더 안전함
[AI]
EBP : Error BackPropagation error란, 예상값(?)-출력값 epoch : 반복 횟수를 의미 학습을 계속 시키는 이유는, error를 낮추게 하기 위해서
python neural networkpython neural network
학습이란 weight(가중치)를 찾기 위한 과정으로, error가 최소화 되는 직선을 찾기 위함
from random import seed
from random import random
# Initialize a network
def initialize_network(n_inputs, n_hidden, n_outputs):
network = list()
hidden_layer = [{'weights':[random() for i in range(n_inputs + 1)]} for i in range(n_hidden)]
network.append(hidden_layer)
output_layer = [{'weights':[random() for i in range(n_hidden + 1)]} for i in range(n_outputs)]
network.append(output_layer)
return network
seed(1)
network = initialize_network(2, 1, 2) # weight list(matrix)
for layer in network:
print(layer)
print()
print(network)
print()
###################### forward propagation(after learning) ##############
from math import exp
# Calculate neuron activation for an input
def activate(weights, inputs):
activation = weights[-1]
for i in range(len(weights)-1):
activation += weights[i] * inputs[i]
return activation
# Transfer neuron activation
def transfer(activation):
return 1.0 / (1.0 + exp(-activation))
# Forward propagate input to a network output
def forward_propagate(network, row):
inputs = row
for layer in network:
new_inputs = []
for neuron in layer:
activation = activate(neuron['weights'], inputs)
neuron['output'] = transfer(activation)
new_inputs.append(neuron['output'])
inputs = new_inputs
return inputs
# test forward propagation
network = [[{'weights': [0.13436424411240122, 0.8474337369372327, 0.763774618976614]}],
[{'weights': [0.2550690257394217, 0.49543508709194095]}, {'weights': [0.4494910647887381, 0.651592972722763]}]]
print(network)
row = [1, 0, None]
output = forward_propagate(network, row)
print(network)
print(output)
print()
###################### forward/backward propagation(learning) ##############
# Calculate the derivative of an neuron output
def transfer_derivative(output):
return output * (1.0 - output)
# Backpropagate error and store in neurons
def backward_propagate_error(network, expected):
for i in reversed(range(len(network))):
layer = network[i]
errors = list()
if i != len(network)-1:
for j in range(len(layer)):
error = 0.0
for neuron in network[i + 1]:
error += (neuron['weights'][j] * neuron['delta'])
errors.append(error)
else:
for j in range(len(layer)):
neuron = layer[j]
errors.append(expected[j] - neuron['output'])
for j in range(len(layer)):
neuron = layer[j]
neuron['delta'] = errors[j] * transfer_derivative(neuron['output'])
# test backpropagation of error
network = [[{'output': 0.7105668883115941, 'weights': [0.13436424411240122, 0.8474337369372327, 0.763774618976614]}],
[{'output': 0.6213859615555266, 'weights': [0.2550690257394217, 0.49543508709194095]}, {'output': 0.6573693455986976, 'weights': [0.4494910647887381, 0.651592972722763]}]]
expected = [0, 1]
print(network)
print()
backward_propagate_error(network, expected)
print(network)
print()
for layer in network:
print(layer)
row = [1, 0, None]
output = forward_propagate(network, row)
print(network)
print(output)
###################### Final forward/backward propagation with dataset (learning-testing) ##############
from math import exp
from random import seed
from random import random
# Initialize a network
def initialize_network(n_inputs, n_hidden, n_outputs):
network = list()
hidden_layer = [{'weights':[random() for i in range(n_inputs + 1)]} for i in range(n_hidden)]
network.append(hidden_layer)
output_layer = [{'weights':[random() for i in range(n_hidden + 1)]} for i in range(n_outputs)]
network.append(output_layer)
return network
# Calculate neuron activation for an input
def activate(weights, inputs):
activation = weights[-1]
for i in range(len(weights)-1):
activation += weights[i] * inputs[i]
return activation
# Transfer neuron activation
def transfer(activation):
return 1.0 / (1.0 + exp(-activation))
# Forward propagate input to a network output
def forward_propagate(network, row):
inputs = row
for layer in network:
new_inputs = []
for neuron in layer:
activation = activate(neuron['weights'], inputs)
neuron['output'] = transfer(activation)
new_inputs.append(neuron['output'])
inputs = new_inputs
return inputs
# Calculate the derivative of an neuron output
def transfer_derivative(output):
return output * (1.0 - output)
# Backpropagate error and store in neurons
def backward_propagate_error(network, expected):
for i in reversed(range(len(network))):
layer = network[i]
errors = list()
if i != len(network)-1:
for j in range(len(layer)):
error = 0.0
for neuron in network[i + 1]:
error += (neuron['weights'][j] * neuron['delta'])
errors.append(error)
else:
for j in range(len(layer)):
neuron = layer[j]
errors.append(expected[j] - neuron['output'])
for j in range(len(layer)):
neuron = layer[j]
neuron['delta'] = errors[j] * transfer_derivative(neuron['output'])
# Update network weights with error
def update_weights(network, row, l_rate):
for i in range(len(network)):
inputs = row[:-1]
if i != 0:
inputs = [neuron['output'] for neuron in network[i - 1]]
for neuron in network[i]:
for j in range(len(inputs)):
neuron['weights'][j] += l_rate * neuron['delta'] * inputs[j]
neuron['weights'][-1] += l_rate * neuron['delta']
# Train a network for a fixed number of epochs
def train_network(network, train, l_rate, n_epoch, n_outputs):
for epoch in range(n_epoch):
sum_error = 0
for row in train:
outputs = forward_propagate(network, row)
expected = [0 for i in range(n_outputs)]
expected[row[-1]] = 1
sum_error += sum([(expected[i]-outputs[i])**2 for i in range(len(expected))])
backward_propagate_error(network, expected)
update_weights(network, row, l_rate)
print('< epoch=%d, learning_rate=%.3f, error=%.3f >' % (epoch, l_rate, sum_error))
# Test training backprop algorithm
seed(1)
dataset= [[2.7810836,2.550537003,0],
[1.465489372,2.362125076,0],
[3.396561688,4.400293529,0],
[1.38807019,1.850220317,0],
[3.06407232,3.005305973,0],
[7.627531214,2.759262235,1],
[5.332441248,2.088626775,1],
[6.922596716,1.77106367,1],
[8.675418651,-0.242068655,1],
[7.673756466,3.508563011,1]]
n_inputs = len(dataset[0]) - 1
n_outputs = len(set([row[-1] for row in dataset])) #one-hot assignment
network = initialize_network(n_inputs, 2, n_outputs)
train_network(network, dataset, 0.5, 200, n_outputs)
for layer in network:
print(layer)
for row in dataset:
outputs = forward_propagate(network, row)
print(row, outputs,)
###################### Final forward/backward propagation with dataset (learning-testing-prediction) ##############
from math import exp
# Calculate neuron activation for an input
def activate(weights, inputs):
activation = weights[-1]
for i in range(len(weights)-1):
activation += weights[i] * inputs[i]
return activation
# Transfer neuron activation
def transfer(activation):
return 1.0 / (1.0 + exp(-activation))
# Forward propagate input to a network output
def forward_propagate(network, row):
inputs = row
for layer in network:
new_inputs = []
for neuron in layer:
activation = activate(neuron['weights'], inputs)
neuron['output'] = transfer(activation)
new_inputs.append(neuron['output'])
inputs = new_inputs
return inputs
# Make a prediction with a network
def predict(network, row):
outputs = forward_propagate(network, row)
return outputs.index(max(outputs))
# Test making predictions with the network
dataset = [[2.7810836,2.550537003,0],
[1.465489372,2.362125076,0],
[3.396561688,4.400293529,0],
[1.38807019,1.850220317,0],
[3.06407232,3.005305973,0],
[7.627531214,2.759262235,1],
[5.332441248,2.088626775,1],
[6.922596716,1.77106367,1],
[8.675418651,-0.242068655,1],
[7.673756466,3.508563011,1]]
network = [[{'weights': [-1.482313569067226, 1.8308790073202204, 1.078381922048799]}, {'weights': [0.23244990332399884, 0.3621998343835864, 0.40289821191094327]}],
[{'weights': [2.5001872433501404, 0.7887233511355132, -1.1026649757805829]}, {'weights': [-2.429350576245497, 0.8357651039198697, 1.0699217181280656]}]]
for row in dataset:
prediction = predict(network, row)
print('Expected=%d, Got=%d' % (row[-1], prediction))
Micro - AI 특강 Day 4
Perceptron -> node 하나가 입력을 받는 것 Supervising : 입력과 출력이 결정되어있는 것 -> 일반적으로 이것을 ‘학습한다’라고 함 unsupervising : 입력만 결정되어 있는 것
- Training, fit, learning, optimize : error가 발생하면, weight를 저장하며 계속 학습시켜 주는 것
- 여기서 반복하는 횟수를 epoch이라고 함
- activation function은 여러가지가 있음 -> 일반적으로 sigmoid 함수를 사용함
- activation function을 잘 선택해야, weight update를 잘 할 수 있음
- learning late : 학습률이라고 하며, 도출된 error를 얼마나 반영할 것인지에 대한 것
- Forward Propagation : input을 넣으면 output이 나옴
- Back Propagation : error용
// neural network = deep learning
학습시에는 초기값을 잘 정해야함. 그래서 초기값을 잘 정하면, 학습이 잘 된다.
————- python은 기본적으로 list구조를 갖고있음. 일괄적인 처리를 못하기 때문에 array로 묶여있는데, 이를 numpy라고 함. tensor는 gpu에 기억될 수 있는 데이터 묶음
pytorch, tensorflow,pandas,sklearn module을 thonny에서 설치 MLP : multi layer perceptron x : input, y:output -> list로 구성되어 있음. 진리표를 list로 저장해놓음
1.학습 (딱 한번만 실행됨, 학습은 오래걸림 : forward(error를 찾는 것),backward가 구성되어 있어서) 2.prediction
example1
import warnings
warnings.simplefilter("ignore")
from sklearn.neural_network import MLPClassifier
#data set
X = [[0., 0., 0., 1.], [0., 0., 1., 0.], [0., 1., 0., 0.], [1., 0., 0., 0.]]
y = [[0, 0],[0, 1], [1, 0],[1, 1]]
#learning model
clf = MLPClassifier(solver='lbfgs', alpha=0.000001, hidden_layer_sizes=(4,7,6), random_state=100, activation='logistic', max_iter=200)
clf.fit(X, y)
print("------------------------------------------------------------")
print("Training loss = " + str(clf.loss_))
print()
print("Coefficients :")
print(clf.coefs_)
print()
print("Intercepts :")
print(clf.intercepts_)
print()
print("Predict for [[0., 0.], [0., 1.], [1., 0.], [1., 1.]]")
print("Predicted value = "+ str(clf.predict([[0., 0., 0., 1.], [0., 0., 1., 0.], [0., 1., 0., 0.], [1., 0., 0., 0.]])))
print("------------------------------------------------------------")
example2
import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense
# Traing Data
input_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], "float32")
output_data = np.array([[0], [1], [1], [0]], "float32")
# Setting up the model
# Modeling -> line connect automatically
# Weight is a learning result
model = Sequential()
model.add(Dense(16, input_dim=2, activation='sigmoid')) #using a 16 nodes
model.add(Dense(1, activation='sigmoid'))
# Training the model
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy'])
model.fit(input_data, output_data, nb_epoch=5000, verbose=2)
# Testing the model
print(model.predict(input_data).round())
[pytorch]
torch가 사용하는 array : torch.tensor tensorflow : dataflow를 modeling하는 package 모음
import torch
import torch.nn as nn
# Defining input size, hidden layer size, output size and batch size respectively
n_in, n_h, n_out, batch_size = 10, 5, 1, 10
# Create dummy input and target tensors (data)
x = torch.randn(batch_size, n_in)
y = torch.tensor([[1.0], [0.0], [0.0],
[1.0], [1.0], [1.0], [0.0], [0.0], [1.0], [1.0]])
# Create a model
model = nn.Sequential(nn.Linear(n_in, n_h),
nn.ReLU(),
nn.Linear(n_h, n_out),
nn.Sigmoid())
# Construct the loss function
criterion = torch.nn.MSELoss()
# Construct the optimizer (Stochastic Gradient Descent in this case)
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
# Gradient Descent
for epoch in range(10000):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x)
# Compute and print loss
loss = criterion(y_pred, y)
print('epoch: ', epoch,' loss: ', loss.item())
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
# perform a backward pass (backpropagation)
loss.backward()
# Update the parameters
optimizer.step()
#만약 module 'tensorflow' has no attribute 'matrix_determinant'라는 에러가 발생시 추가
import tensorflow.compat.v1 as tf
import numpy as np
tf.disable_v2_behavior()